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Field theory with higher derivatives-Hamiltonian structure 
L. M. C. COELHO DE SOUZA and P. R. RODRIGUEST 
Departamento de Matemltica, Faculdade de Filosofia, Universidade Federal do Rio 
Grande do SUI, PBrto Alegre, Brazil 
MS. receiced 2 6 t h  Augus t  1968, in revised form 2nd December 1968 

Abstract. Canonical formalism, including Hamilton's equations, transformation 
theory and Poisson brackets for classical field theory with higher time and/or spatial 
derivatives, is established. 

1. Introduction 
Since the early work of Podolski and co-workers (Podolski 1942, Podolski and Kikuchi 

1944, Podolski and Schwed 1948), where an electromagnetic theory with second-order 
derivatives was introduced, many attempts (Chang 1948, Green 1948, Katayama 1954, 
Taniuti 1955, 1956) have been made to exploit a theory of fields with higher derivatives, 
with the clear intention of trying to generalize the theory of Podolski. In  these attempts 
two different alternatives have been followed and, as far as we know, the present situation 
concerning this problem is as follows. 

(i) Hamilton's equations for the special case where the Lagrangian contains derivatives 
up to second order have been derived by Podolski. 

(ii) For a special class of field theory with higher derivatives, canonical equations were 
derived by Chang, without either an explicit definition of the canonical variables or a 
development of a transformation theory. The problem is reduced to a usual one where the 
Lagrangian contains derivatives up to first order and the variation of the action integral 
is performed under s - 1 subsidiary conditions (a set of field coordinates are time derivatives 
of some other coordinates). The unknown multipliers introduced by the process are identi- 
fied with s-  1 momenta, which are not directly defined-actually these momenta are 
solutions of a system of s- 1 first-order differential equations. That is the reason why 
(although the canonical equations so obtained are formally identical with ours) the con- 
struction of a suitable Hamiltonian (which in general is a hard task) becomes virtually 
impossible for large s. As one of the main applications of this theory (an approach to the 
non-local interaction as infinite sums of interactions of a higher derivative (s -+ CO)) concerns 
precisely these large s, it is perhaps explained why this formulation has not been used in 
subsequent papers dealing with the problem. 

(iii) De Wett (1948) followed a different alternative defining canonical variables and 
Hamiltonian formalism. The  following criticisms are valid : ( U )  the Hamiltonian formalism 
does not contain the simplest one as a particular case (i.e. when the field variables do not 
depend on the spatial coordinates, the usual formalism of the mechanics of this higher-order 
derivative is not obtained) ; ( b )  a transformation which leaves these equations invariant is 
not available (up to now). 

(iv) Canonical transformations and Poisson brackets for such theories have not been 
studied. 

(17) A Hamiltonian formalism was developed by Thielheim (1967). It will be discussed 
in detail in appendix 2 because of its formal resemblance to ours. 

It is the purpose of this paper (i) to establish a Hamiltonian formulation with canonical 
variables explicitly defined, and (ii) to prove, via a transformation theory, invariance of 
the formalism and to define Poisson brackets for a classical field theory described by a 
Lagrangian density 
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where the yU = ya(xo, xl, ..., x,) are the field coordinates (with cc = 1, 2, ..., N ) ,  xo, 
xl, ..., x, are independent coordinates and 

am9, 
.I - 

va;tl.,,im - axil ... axi, 
Let us consider the functional 

J = / 9 . .  1 g ( V ( r ,  Pa;il,..> yu;i1..,i8, xo, . * * ?  xn> dx, dxn. (1) 
R 

It is assumed that the integrand 9 has continuous derivatives up to order s with respect 

Assuming that the region R remains fixed, while the functions are varied in such a 
to all its arguments. 

way as 
ya(x) -+ vL("(x) = yu(x) +€fa(%) + higher powers of E 

qa;i1...i,(x0, XI, * * *  xn), etc.) 
Let 6J = J*-J  be the variation of functional (l), corresponding to the transforma- . .  

tion (2), i.e. 
n r  

- = q v a ( x ) ,  va;t1(x), ' * e ,  va;i1 ,.J, X)>X) d"x. ( 1  
Using Taylor's theorem, we find the variation of functional (1) to be 

In order to avoid unnecessary calculations we restrict ourselves to the case where R" is 
a hyperparallelepiped. (The result obtained by the repeated use of Green's theorem will 
be the same whatever the shape of R".) Integrating by parts and rearranging equation 
(3) we obtain 
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where dn-lx is the volume element in the space Rn-l  defined by Rn-lU{xi1> = R", 
dn-2x is the element in Rn-2  defined by R"-2U{xi,>U{xl,> = Rn etc. The curly 
bracket means, in this case, that the function is calculated in the boundary of R". 

We obtain the Euler-Lagrange equations 

8 9  d 8 9  It d d 8 2  --ci-- 
aqu 0 dxi1 2pa; i l  

provided 

in the hypersurface bounding Rn, or equivalently 

8pu;fl..,im = 0,  m = 1, ..., s-1. 

2. Hamilton's equations 
In order to obtain a Hamiltonian formulation, let us single out one variable (xo) 

which may be called the time. I t  mill be useful to introduce the following generalization 
of functional (or variational) derivatives. If 

2F = q P u ,  Ya;i1,  a * ' >  T u ;  tl...i.> *o, ' S .  xn) 
is a function of the field coordinates, its derivatives and the independent variables xo, 
xl, .# . ,  x,, then the s-functional derivative of the functional 

F = 1 .,. J9-dxl  ... dx, = J F d z :  

with respect to qa is denoted by ASF/ASva and by definition is 
d 89- It d d 89- 

( 5 )  2 -- a . .  

As% 2% 1 ildxIl ~YcC;f1 + * * e  +(-  l ) s  L4 1 dxi, dxi, 2yu;i1,.,is* 
AsF def 8 9  
-= - -  

(In the case where s = 1, we have the correct usual functional derivative.) We shall omit 
the s subscript of A,F/A,p, whenever possible without confusion. 

With the aid of this definition, equation (4) may be written as 

where 

and 

dz AL 
- 0  

0 dxo' Ap,") 

L = 1 .., [LZdx, ... dx, 
1 -  

(4') 

Equation (4') shows a very close formal resemblance to the equation 

which, as is well known, describes a (generalized) system of mechanics including higher 
time derivatives of the coordinates qa(t). By analogy, we define the conjugate momenta as 
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i.e. 7iia, where x = 1, 2, ..., s, is a function of r+ and its time derivative up to order 2s- GI: 

ax0 ax0 ax02s-a =7 7ra = 71, (p, 2, %, ..., 
Therefore, the sets of coordinates ys  = (9, ..., qP-l)} and Os = ( T ~ ,  ..., fiS} are indepen- 

dent, in general. Even if they are not, when s is the highest order of derivation, there will 
always exist an sr < s, such that the y s  and Os will be independent in a theory where the 
highest order of derivation is S I .  The conjugate momenta so defined are solutions of the 
system proposed by Chang (1948). 

We are now able to define the Hamiltonian H: 

From equation ( 7 )  and using definition ( 5 )  we obtain 
AH AL -- - r a / m  - - Avdm) ACpa(m) 

which according to equation (6) can be written 
AL -- AH s - m  d1 AL 

Avd" - 21 0 ( - ' ) ' a A v ; i + m )  

d1 AL 
= 1, (-1)l- 

2, (-1)'- 

-- 
Av,,(m) 

s -  m 

1 dxol Acpa('+ m, 

dl AL d s - ( m + l )  
= -- 

dxo 0 dxol A p a ( l + m - l ) '  

Finally, again using definition ( 6 ) ,  we have 
d 

r ' c r / m + l  (8) -- - -- AH 

Avdm) dx0 
for m = 0, 1, .,,, s- 1 (since A H / A Y ~ ( ~ )  is zero because of (6)). Finally 

for m = 0, 1, ..., s- 1 since H is independent of 
zero, because of (4f). It is obvious that 

which can be proved to be trivially 

8-52? a& 
ax, ax, 

- -- -- 

3. Canonical transformations-Poisson brackets 
Let us consider a (time-independent) transformation of the type 

= v a ( m p 4 ,  @p, ..') (DO(-, ..., rIb/s] (10) 
Tn , /m = Ta/m[@g,  @ O ( l ) r  @B(s-l), nB/1, ..*, nB/s] ( lor>  

to lead us from the set (9, 71) to another set of coordinates (0, II} and such that, provided 
equations (8) and (9) are satisfied, we obtain 
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where 

andm = 0, 1 7 . . . 7 s - l ; f i  = 1,2,  ..., N .  

appendix 1) equations (8) and (9), we have 

K = [ I T 7  @I = H k P ,  @ I ,  v[n, @I] 

If we suppose transformations (10) and (lo’) already performed and expand (see 

dx, ... dx, 
AK A@,(”) AK A l l B l r + ,  +------ 

(8“) +--- AT d*”r+l) dx, ... dx, 
N s - 1  

AIT,,,,, dx, 

dxl ... dx, 

Substituting (8’) and (9’) into (8”) and (9”) and then equating the coefficients of the field 
variables Q, and II, we obtain the canonical conditions 

form 
N s-1 AA AB A A  AB 

[ A , B ] = z u ~ m ~ . . . f ( - - - - - - - - - -  AvJm) Ana/, + 1 A r u / m +  1 A VU ( m )  ) dxl ... dx, 
1 0  

(12) 

if A and B are functionals of the field variables. Besides, 
dA aA _ -  - - + [ A , H ]  
dt at 

dTu/m+ 1 
dx, 

- [ H ,  n u / m + ~ I  

which maintain the analogy with the usual theory. 

Appendix 1 

F = Jg dv. If we perform a variation 4p)(l), then we have 
Let us suppose that is a function of p;, y ( l ) ,  ..., @) and its spatial derivatives and 
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After K successive partial integrations on the ( K  + 1)th term, this expression becomes 

Now, let us uppose that the y ( l )  are functionals of 6, #(I), ..., y!dS) and its spatial deriva- 
tives. If we perform a A#(i) variation on i/P), we have 

But, if F is also a functional of $, 

Substituting (A2) into (Al) and comparing the expression obtained with (.43), we obtain 
the 'chain rule' for our generalized functional 

A F  AV'') -= A F  Zl I--- 
dv A4'"r' Ay(l) A#(r) 

which is used in expanding equations (8) and (9). 

Appendix 2 
A Hamiltonian formalism was presented by Thielheim (1967), but, although his 

Hamilton equations are quite similar to ours, there is a fundamental difference between 
the two definitions of the variable 7i. Using our symbols, his definition is written 

This definition can be said to be a linear combination of spatial derivatives of 

a 9  
aF'2?!l + k - 1) 

CI ; I  r...zf 

which can be written as 
a 9  
(2m-1) 

T ~ , ~  = linear combination of spatial derivatives of 
'Pa;iI.. .ij  

d 8 9  + linear combination of spatial derivatives of -- + a . .  . dxo %:;;..,tr 

In  the same manner, if we write our definition of the T as 

we can also say that our rrcrlm are a linear combination of the spatial derivatives of 

a 9  
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a linear combination of the spatial derivatives of 

v-" a 9  

0 Y 7 ; t  
dxs-m a ( 5 )  ' 

We are now able to compare the two definitions, and it is clear that they are equivalent 
only if m = 2m- 1 (or m = l), that is, the usual case. 

Besides this difference, which leads to two fundamentally different results, the work 
in question does not develop a transformation theory and the author himself calls attention 
to the fact that his transformed equations of motion can not in general be reduced to the 
form of the Lagrange equation. 
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